Identification of Socioeconomic Variables Responsible for Hypertensive Kidney Disease Among Bangladeshi Adults

K.C.Bhuyan
Professor (Retired) of Statistics, Jahangirnagar University, Dhaka, Bangladesh
*Corresponding Author: K.C.Bhuyan, Professor (Retired) of Statistics, Jahangirnagar University, Dhaka, Bangladesh.
Received: September 09, 2022 | Accepted: December 16, 2022 | Published: January 23, 2023
Citation: K.C.Bhuyan, Professor (Retired) of Statistics, Jahangirnagar University, Dhaka, Bangladesh. Identification of Socioeconomic Variables Responsible for Hypertensive Kidney Disease Among Bangladeshi Adults, J Clinical and Medical Research and Studies. 2(1).
Copyright: © 2023 K.C.Bhuyan, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cre dited.

Abstract

The study was conducted to identify some socioeconomic variables responsible for the prevalence of hypertensive kidney disease among Bangladeshi adults of 18 years and above. For this, 498 males and 497 females, totalling 995 adults of both urban and rural localities were investigated. In the sample there were 17.6% hypertensive adults and 18.9% of them were suffering from hypertension and kidney disease simultaneously. Beside other percentages of respondents, there were 19.6% elderly people of ages 50 years and above, 30.2% obese adults, 67.0% diabetic patients, 44.4% involved in sedentary activity and 33.1% smokers. The overall percentage of hypertensive kidney patients was 3.3. These group of patients were discriminated from the remaining 96.7% adults. During discrimination duration of diabetes was identified as most responsible variable followed by age, body mass index, sedentary activity, smoking habit, etc. The risk of prevalence of this health problem was 12.25 times in diabetic patients suffering for 15 years and above, 8.43 times in elderly people, 16.80 times in obese adults, 2.50 times in adults involved in sedentary activity, and 1.91 times in smokers. Higher risk rate was also observed in adults of lower economic group of families.

Keywords: Hypertension, kidney disease, obesity, diabetes, discriminant analysis, risk ratio

Introduction:

Obesity, diabetes and hypertension are three inter related health problems and are the risk factors of many non-communicable diseases including kidney diseases [1-12]. Diabetes leads to kidney failure and chronic kidney disease is associated with pre-diabetes, obesity and hypertension [13-18]. Hypertensive kidney disease is a medical condition referring to damage of kidney due to chronic high blood pressure [19]. Hypertension can lead to severe health complications worldwide [20,21]. It increases the risk of heart disease, stroke, and sometimes death [22-27]. The problem is recognized as modifiable risk factor for cardiovascular disease and at an end stage renal disease [23]. But, it is the major cause of premature death worldwide [24]. Number of adults with hypertension increased from 594 million in 1975 to 1.13 billion in 2015. The increase was noted largely in low-and middle-income countries. Around 7.5 million deaths or 12.8% of the total of all deaths worldwide occur due to high blood pressure [28]. It is predicted to be increased to 1.56 billion adults with hypertension in 2025 [29]. The risk factor of hypertension is cardiovascular and its related diseases. Again, heart failure is highly prevalent in patients of chronic kidney disease and end stage renal disease and this problem leads to mortality [30-32].
The risk factors for hypertensive kidney disease is poor health management including lower control of high blood pressure and other kidney disorders [19]. The problem is also associated with some socioeconomic characteristics including older age, gender variation [33]. In this paper, an attempt was made to identify some socioeconomic variables responsible for the prevalence of hypertensive kidney disease among Bangladeshi adults.

Methodology

The present analysis was done using the data collected from 995 urban and rural adults of 18 years and above. The data were collected during the session 2018-19 by some nurses and medical assistants working in some objectively selected diagnostic centres located in both urban and semi-urban areas of Bangladesh. Among the respondents 498 were males and 497 were females.

The ratio of males and females were 50.1:49.9 which is the national sex ratio of Bangladesh [34]. The respondents were from both urban and rural areas of the country and among them 67% were diabetic patients.
The data on different socioeconomic variables of each selected respondent were recorded through a pre-designed and pre-tested questionnaire containing different questions related to residence, religion, gender, marital status, age, education, occupation, family income, family expenditure. Beside these demographic data, other information were on life-style, including involvement in physical work, smoking habit, consumption of restaurant food, and utilization of time by the respondents. The information of prevalence of any of the non-communicable diseases, duration of diabetes, and the stages of treatment of the disease and the cost of treatment of the disease were also recorded. The collected data were recorded in both interval and nominal scales, but for ease of analysis all data were expressed in nominal scale. The data of weight (in kg) divided by height (in metre2) was used to measure the value of body mass index (BMI) to identify obese adults(if BMI ≥ 27.5; underweight ,if $\mathrm{BMI}<18.5$; normal, if $18.5 \leq \mathrm{BMI}<23.0$; overweight, if $23.0 \leq \mathrm{BMI}<27.5$) [35,36]. The hypertensive adult was identified if blood pressure(B.P) level (mmHg) of any one was $\geq 130 / 80[37,38]$.
To fulfil the objective of the study, the association of each of the socioeconomic variable with the prevalence of hypertensive kidney disease was investigated, where significant association was decided if p-value of any Chi-square statistic ≤ 0.05 [$\mathrm{P}(\mathrm{J} \leq 0.05]$. Irrespective of significant or insignificant association, the risk ratio and its confidence interval was calculated for adults for whom prevalence of hypertensive kidney disease was noted in higher rate for a particular level of a socioeconomic variable. Finally, discriminant analysis was done to select the most responsible variable for the prevalence of this health problem. The most responsible variable was identified depending on the highest absolute value of correlation coefficient of socioeconomic variable with discriminant function score [39, 40, 41]. All the calculations were done using SPSS Version 25.

Results

The percentage of hypertensive adults in the sample was 17.6 and that of kidney patients was 9.2. Among the hypertensive adults 18.9% were kidney patients also [Table 1]. The different health problem was significantly associated with prevalence of hypertension [$=105.383, \mathrm{p}$-value $=0.000$]. The sample hypertensive kidney patients were 3.3%. They were classified into different
classes according to different levels of socioeconomic variables. The classified results were presented in Table 2.

Prevalence of health problem	Prevalence of hypertension				Total	
	$\begin{array}{r} \text { Yes } \\ \text { Number } \end{array}$	\%	No Numb	\%		\%
None	60	34.3	546	66.6	606	60.9
Heart	55	31.4	71	8.7	126	12.7
Eye	19	10.9	104	12.7	123	12.4
Kidney	33	18.9	59	7.2	92	9.2
Disability	8	4.6	40	4.9	48	4.8
Total	175	17.6	820	82.4	995	100.0

Table 1: Distribution of adults according to prevalence of hypertension and health problem

Smoking habit					
Yes	16	4.9	313	95.1	329
No	17	2.6	649	97.4	666
Habit of taking process food					
Yes	13	3.6	350	96.4	363
No	20	3.2	612	96.8	632
Physical work					
Yes	19	4.0	462	96.0	481
No	14	2.7	500	97.3	514
Utilization of time					
Sedentary activity	22	5.0	420	95.0	442
No	11	2.0	542	98.0	553
Obesity					
Underweight	0	0.0	38	100.0	38
Normal	2	0.9	231	99.1	233
Overweight	2	0.5	422	99.5	424
Hypertensive	29	9.7	271	90.3	300
Prevalence of diabetes					
Yes	28	4.2	639	95.8	667
No	5	1.5	323	98.5	328
Duration of diabetes (in years)					
Does not arise	5	1.5	323	98.5	328
< 5	2	0.7	289	99.3	291
5-10	4	1.9	202	98.1	206
10-15	6	6.1	93	93.9	99
15^{+}	16	22.5	45	77.5	71
Total	33	3.3	962	96.7	995

Table 2: Distribution of adults according to prevalence of hypertensive kidney disease and socioeconomic variables

Socioeconomic variable	Wilk's Λ	$\begin{array}{ll} \hline \text { F } & - \\ \text { value } \end{array}$	P - value	Discriminant function coefficient	Correlation coefficient of variable and discriminant function score
Residence	0.999	0.879	0.349	0.063	0.058
Religion	0.994	5.670	0.017	0.172	0.148
Gender	1.000	0.439	0.508	0.145	-0.041
Marital status	0.999	1.016	0.314	-0.013	0.063
Age	0.840	$\begin{aligned} & 188.79 \\ & 5 \end{aligned}$	0.000	0.708	0.852
Education	0.998	2.125	0.145	-0.115	-0.090
Occupation	1.000	0.348	0.556	-0.035	0.037
Family Income	0.999	0.573	0.449	0.289	0.047
Family expenditure	1.000	0.209	0.648	-0.348	-0.028
Body mass index	0.991	9.290	0.002	0.059	0.189
Smoking habit	0.993	7.374	0.007	-0.121	-0.168
Utilization of time	0.982	18.449	0.000	0.168	0.267
Habit of taking process food	0.981	18.938	0.000	0.278	0.270
Physical labor	1.000	0.442	0.506	0.007	0.041
Prevalence of diabetes	0.993	7.319	0.007	0.312	-0.168
Duration of diabetes	0.915	91.861	0.000	0.409	0.594

Table 3 : Results related to discriminant analysis

The rural adults were 53.4% in the sample and 3.4% of them were patients of hypertensive kidney disease as against the overall 3.3% patients of these diseases. Rural and urban people were similarly exposed to this health hazard [$=0.019$, p -value $=0.890$; R.R. $=1.05$, C.I. ($0.40,2.78$)]. The sample male adults were 50.1% and 3.8% of them were affected by this health hazard. There was insignificant association between gender variation and prevalence of hypertensive kidney disease but male adults were at more risk by 35\% [= 0.773 , p -value $=0.379$; R.R. $=1.35$, C.I. $(0.69,2.66)]$. The percentage of nonMuslim respondents was 14.8 , but higher proportion (0.041) of them , though not significantly different from the corresponding proportion (0.032) of Muslim adults, were suffering from hypertensive kidney disease [$=0.315, \mathrm{p}-$ value $=0.575$]. But non-Muslim adults had higher risk of facing this problem by 28% more [R.R. $=1.28$, C.I. $(0.54,3.04)$]. Single adults were only 6.9% in the sample, but 4.1% of them were patients of hypertensive kidney disease. For them the chance of facing this health problem was 34% more as it was for married adults [R.R. $=1.34$, C.I. $(0.42,3.88)]$. However, prevalence of hypertensive kidney disease was independent of marital status [$=0.246$, $\mathrm{p}-$ value $=0.620$]. The sample elderly people of ages 60 years and above were 8.0% and of ages 50 years and above were $19,6 \%$. The prevalence rate among the above mentioned first group of adults was 17.5% and among the second group it was 13.8%. There was significant increasing trend of prevalence rate with the increase in ages [$=89.956, \mathrm{p}$-value=0.000]. The eldest group of adults had risk of 8.43 times as it was for others and the risk of elderly group of adults was 18.46 times compared to others [R.R. $=8.43$, C.I.(4.40, 16.16); R.R. $=18.46$, C.I.($7.73,44.07)\}$. The percentage of primary educated respondents in the sample was 12.2 and 7.4% of them were patients of this health hazard as against the overall percentage 3.3 of sample affected adults. This group of adults were at higher risk of the problem by 94% compared to the risk of others [R.R. $=1.94$, C.I. $(0.86,4.38)]$. The prevalence rate (3.0%) was lower among higher educated persons(57.5\%). But there was no significant increasing or decreasing trend in the prevalence rate with the increase in level of education [$=7.710, \mathrm{p}-$ value=0.052]. Similar insignificant rates of prevalence was noted for people of different levels of occupation $[=3.407, p$-value $=0.492]$. But highest rate (4.8%) was observed among agriculturists and unskilled labours (10.5%). This group was 93% more exposed to this health hazard [R.R. $=1.93$, C.I. $(0.76,4.89)$] Physically active persons were 48.3%,but higher proportion (4.0%) of them were affected by this health hazard. For them the risk of the disease was 45% more as it was in others [R.R. $=1.45$, C.I. $(0.74,2.86)$]. But prevalence was independent of physical activity [$=1.165, \mathrm{p}$-value $=0.280$]. The percentage of respondents involved in sedentary activity was 44.4 and 5.0% of them were facing the problem of hypertensive kidney disease. They were more exposed to this health hazard by 2.50 times compared to others [R.R. $=2.50$, C.I. $(1.22,5.10)$] The prevalence was significantly associated with utilization of time [$=6.841, \mathrm{p}$ -value=0.009].
The respondents from lowest income group of families was 39.1% and 4.8% of
them were suffering from hypertension and kidney disease simultaneously. Their chance of facing the problem was 87% more as it was for others [R.R.1.87, C.I. $(0.96,3.71)]$. Though not significant the prevalence rate was in declining trend with the increase in level of family income [$=4.044, \mathrm{p}$-value $=0.257$] Almost similar was the case in respect of family expenditure [$=2.281, \mathrm{p}$-value $=$ 0.516]. The adults from families spending lowest amount of money as family expenditure was 41.4% and prevalence rate among them was 4.1%. For them the chance of prevalence was 48% more as it was for others [R.R. $=1.48$,C.I.($0.76,2.89)]$. The sample process food consumers was 36.5% and prevalence rate of hypertensive kidney disease was noted among 3.6% of them. They were almost similarly exposed to this health problem compared to the same problem of non-consumers[R.R. $=1.13$, C.I. $(0.57,2.24)$]. It indicated that prevalence was independent of consumption of process food [$=1.25, \mathrm{p}-$ value $=0.724]$. The smoker adults were 33.1% and 4.9% of them were suffering from both hypertension and kidney problem simultaneously. For them the risk of prevalence was 91% more as it was for non-smokers [R.R. $=1.91$, C.I.(0.98 , 3.73)]. However, smoking habit was not significantly associated with the prevalence of hypertensive kidney disease [$=3.667, \mathrm{p}$-value $=0.056$].
The percentage of obese adults was 30.2 and 9.7% of them were patients of hypertensive kidney disease. Their chance to be affected by this health problem was 16.80 times as it was for non-obese adults [R.R. $=16.80$, C.I.(3.88, 72.78)]. Level of obesity was significantly associated with prevalence of hypertensive kidney disease [$=54.122, \mathrm{p}$-value=0.000]. Prevalence of diabetes was also significantly associated with prevalence of hypertensive kidney disease [= 4.901, p-value $=0.027$]. In the sample there were 67.0% diabetic patients and 4.2% of them were facing this health problem. For them the chance of prevalence was 2.75 times as it was for non-diabetic adults [R.R.=2.75,C.I. 1.07 7.06)]. Prevalence of hypertensive kidney was significantly associated with duration of diabetes and prevalence rate was in increasing trend with the increase in duration [$=94.881, \mathrm{p}-$-value $=0.000$]. The percentage of diabetic patients suffering for 15 years and above was 7.1. Among this group the prevalence rate was observed 22.5%. For them the chance of prevalence was 12.25 times compared to the chance of others [R.R. $=12.25$, C.I. $(6.47,23.21)$].

Results of Discriminant Analysis

The sample adults were classified into two groups. In one group there were 3.3% hypertensive kidney patients. This group was significantly different from the remaining 96.7% adults of other group in respect of some socioeconomic characters. But all socioeconomic characters were not similarly responsible in discriminating two groups. The most responsible variable was identified by performing discriminant analysis. For the analysis the variables included were residence religion, gender, marital status, age, education, occupation, family income, family expenditure, utilization of time, physical work. Habit of taking process food, smoking habit, body mass index, prevalence of diabetes and duration of diabetes. Out of these variables, the impacts of age, utilization of time, body mass index, prevalence of diabetes and duration of diabetes were significantly different for two group of adults. It was observed by F-test. The results of the tests and of discriminant analysis were presented in Table 3. The discriminant analysis was satisfactory as was observed by Chi-square test
where $=117.114, \mathrm{p}$-value $=0.000[=0.888]$.
The analysis showed that the most responsible variable for discrimination of two groups of adults was duration of diabetes followed by age, body mass index, utilization of time, prevalence of diabetes, smoking habit, family expenditure, education, family income, etc.

Discussion

The damage of kidney due to chronic elevated blood pressure is termed as hypertensive kidney disease. The relationship between blood pressure and incident of kidney problem is evident in different studies in both home and abroad [$17-19,42-46$]. The risk factors for this health problem are older age, obesity, prevalence of diabetes, physical inactivity, intake of fatty and high salt food, poorly controlled medium and high blood pressure and poor health management [18-19, 31, 45-47]. Beside these variables, there may be some other variables enhancing the prevalence rate of hypertensive kidney disease. The present paper was an attempt to identify some socioeconomic variables responsible for the prevalence of hypertension and kidney disease simultaneously in adults of Bangladesh. For this, 995 urban and rural adults of 18 years and above were investigated and related data were collected and analysed.
The study of association between prevalence and socioeconomic variables indicated that the prevalence of hypertensive kidney disease was independent of residence, religion, gender, marital status, education occupation, family income, and family expenditure. But the value of calculated risk ratio provided the information that non-Muslims, males, single adults, primary educated adults, agriculturists, and adults belonged to lowest economic condition had higher risk of prevalence. An inverse insignificant association between physical labour and prevalence was noted. Adults doing physical work had 45% more chance of prevalence of this health hazard. Age, utilization of time, obesity, prevalence of diabetes and duration diabetes were significantly associated with prevalence of hypertensive kidney disease. Discriminant analysis identified duration of diabetes as the most responsible variable for the prevalence. In order of weight of responsibility the other variables were age, body mass index, utilization of time, prevalence of diabetes, smoking habit, etc. Elderly people of ages 50 years and above, persons involved in sedentary activity, obese adults, diabetic adults, adults suffering from diabetes for 15 years and above had 18.46 times, 2.50 times, 16.80 times, 2.75 times, and 12.25 times, respectively risks of prevalence of the problem .

Conclusion

The present paper provided analytical results to identify some socioeconomic variables responsible for prevalence of hypertensive kidney disease in Bangladeshi adults. For the analysis, data were collected from 995 adults of 18 years and above residing in both urban and rural areas. Out of 995 adults 3.3% were hypertensive kidney patients. Higher prevalence rate, significant or insignificant, corresponding to this rate was observed in rural people (3.4), males (3.8%), non-Muslims (4.1), single persons (4.3%), elderly people(13.8%), primary educated adults (7.4%), farmers (4.8\%), poorest people(4.8\%), smokers (4.9%), process food consumers (3.6%), physically active adults (4.0%), adults involved in sedentary activity (5.0%), obese people (9.7%), diabetic patients suffering for 15 years and above(22.5%). However, except rural people and process food consumers, all other adults suffering from the disease in higher rate were more exposed to this health hazard. The chance of prevalence of the disease was at least 50% more among elderly people, primary educated people, farmers, adults of lower economic conditions smokers, adults involved in sedentary activity, obese adults , and diabetic patients suffering for longer duration. The prevalence rate was in significantly increasing trend with the increase in both age and duration of diabetes. Finally, the hypertensive kidney patients was significantly discriminated from the remaining adults. The most responsible variable for the discrimination waz duration of diabetes followed by age, body mass index, utilization of time, prevalence of diabetes, smoking habit, etc.
All the responsible variables except age were lifestyle factors. Some of these cannot be avoided due to socioeconomic upward mobility in the country. But the extent of risk of prevalence due to these variables can be reduced if people can regulate their lifestyle towards healthy life. For this, they should be careful in
(i) taking process and can food instead of home made healthy food,
(ii) taking drinks and drugs,
(iii) utilizing time towards health life outside the office hours/ norma working hours,
(iv) adhering medical check up and treatment after consulting a medical practitioner,
(v) maintaining blood sugar level and blood pressure level.

References

1. United Nations World Population Projection to 2150 (1998): Population and Development Review, 24, 183-189.
2. Kumar, V.(1997): Ageing in India - Overview , Indian Journal of Medical Research, 106, 257-264.
National High Blood Pressure Education Program Working Group (1997): Report on hypertension in the Elderly, 23, 275 - 285. A.S.M. K.(2015): Association of socioeconomic status with diagnosis, treatment and control of hypertensive individuals in Bangladesh: a population- based cross-sectional study, Jour. Roy. Soc. Med. 6(10), 1 - 11; doi: 10.1177/ $\underline{2054270415608118 .}$
Tesfaye, S.; Chaturbedi, N.; Eaton, S.E.; Ward, J.D. ; Manes, C. and Ionescu - Tirgo viste, C. (2005): EURODIAB prospective complications study group: Vascular risk factors and diabetic neuropathy, N ENG. J. Med., 352, 341 - 350.
Sowers, J.R.; Epstein,M. and Frohlich, E.D. (2001): Diabetes, hypertension and cardiovascular disease : an update, Hypertension,37, 1053-1059.
Bernard, M.V. Cheung and Chao, Li . (2012): Diabetes and hypertension: Is there a common metabolic pathway ? Curr Atheroscler Rep.14(2), 160-166.
3. Csaba, P. Kovesdy ; Susan,L. Further and Carmine Zoccali (2017): Obesity and kidney diseases: hidden consequences of the epidemic, Brazilian Jour Nephrol,39(1), https://dx.doi.org/10.5935/0101-2800.2017-0001.
4. Bhuyan,K.C.(2020): identification of socioeconomic variables responsible for diabetic kidney disease among Bangladesh adults, Biomed I Sci \& Tech Res ,24(2), DOI:10.26717/BJSTR.2020.24.004021.
5. Echouffo - Tcheugui, J.B.; Narayan, K.M.; Weisman, D.; Golden, S.H. and Jaar, B.G. (2016): Association between pre-diabetes and eisk of chronic kidney disease: systematic review and meta-analysis, Diabetic Medicine, 33(12), 1615-1624. doi: $10.1111 / \mathrm{dmc} .13113$.
6. Deloitte (2011) : Two of a KinD, Kidney Health Australia. http: // www. Donatelife.gov.au/Discover/ Facts - and - Statistics.
7. Hall, J.H.; Brands, D.W.; Henegar, J.R,; et al (1998): Kidney function as a cause and a consequence of obesity hypertension, Clin Exp Pharmacol Physiol, 25, 58 -64.
8. Hall, M.E.; Jussara, M do Carmo and Hall, J.E.(2014): Obesity, hypertension, and chronic kidney disease, Inter Jour Nephrol Renovascular Disease, 7, 75-78.
9. Zhiwei, Zhang (2020): Hypertensive arteriolar nephroselerosis, Merck Manuels, Reviewed in January, 2020.
10. Hanratty, R.; Chonehol, M. and Steiner, I.F.(2011): Relationship between blood pressure and incident of chronic kidney disease in hypertensive patients, Clin Jour Amer Soc Nephrology, 6(11), 2605-2611.
11. Erem, C.; Hacihasanoglu, A.; Kocak, M.; Deger, O.; Topbas, M: Prevalence of prehypertension and hypertension and associated risk factors among Turkish adults: Trabzon hypertension study, Journal of Public Health, 2009, 31(1), 47 58. doi: $10.1093 /$ pubmedfdn078.

Ahmed, A.; Rahaman, M.; Hasan, R.; Shima, S.; Faruquee, M.H.; Islam, T and Emdadul, S.: Hypertension and associated risk factors in some selected rural areas of Bangladesh, International Journal of Research in Medical Sciences, 2014, 2(3), p925. doi:10.54552320-6012.ijrms20140816.
22. Branda, B.S.: Medical News Today. 2019
23. Cihangir, E. ; Arif, H. ; Mustafa, K.; Orhan, D. and Murat, T. : Prevalence of prehypertension and hypertension and associated factors among Turkish adults: Trabzon Hypertension Study, Jour Pub Health, 2008, 31(1), 4-58. doi: 10.1093/pubmed/fdn078.
24. WHO : Hypertension: World Health Organization, Financial Report, 2019
25. Sikha, S. ; Ravi, S. and Singh, G.P.: Prevalence and associated risk factors of hypertension : A cross-sectional study in urban Varanasi, Int Jour Hypertens,2017, 5491838.
26. Chobanian, A.V.; Bakris, G.L. ; Black, H.R.; Cushman, W.C. et al : Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure, Hypertension, 2003, 42(6), 1206-1252. Epub 2003, Dec 1.

27. Keamy, P.M; Whelton, M.; Reynolds, K. et al : Worldwide prevalence of hypertension : a systematic review, Jour Hypertens., 2004,22, 11-19.
28. Mendis, S. : Global status report on non- communicable diseases, Tech Rep WHO 3 2010.
29. Tabrizi, I.S.; Sadeghi- Bazargani, M.; Farahbakhsh, L.N. and Nikniaz, Z. : Prevalence and associated factors of prehypertension and hypertension in Iranian population: the lifestyle promotion project (LPP), PLoS One,2016, 11(16), Article ID e0165264.
30. Liviu, S.; Ionut, V. and Covic, A. (2014): Heart failure in patients with chronic kidney disease: A systematic integrative review, Biomed Record International, Article I.D. 937398.
31. Tedla, F.M.; Brar, A. ; Browne .R. and Brown, C. D. (2011): Hypertension in 42 chronic kidney disease: Navigating the Incidence, Inter jour Hyperten, 2; DOI: 10.461/2011/132405
32. Javier,D. and Leviades, C. (2008): Hypertensive heart disease in the patient of 43 chronic kidney disease, Neprology,28(2), 123-238.
33. https://journals.plos.org/plosone/article?id=10.1371/iournal.pone. 0214568
34. Bangladesh Bureau of Statistics (2018): Statistical Year Book of Bangladesh,2017, BBS, Dhaka, Bangladesh.
35. Appropriate Body Mass Index for Asian Population and its Implications for 4 Policy and Intervention Strategies, WHO Expert Consultation, Public Health Lancet 363, 2004.
36. Biswas, T.; Garnett, P. Sarah and Rawal, B.Lal (2017): The prevalence of underweight, overweight, and obesity in Bangladesh: Data from a national survey, PLoS One, 12(5), e0177395.
37. Ian, A.S. ; Yan, Li.; Azusa, H.; KEI, A.; Eamon, D. and O'Brien, E. : Blood pressure measurement anno 2016. Amer Jour Hypertens, 2017, 30(5), 453 463.https://doi:org/10.1093/ajh/hpw 148.
38. Цessica, Y.I.;Zaman, M.M.; Haq, S.A.; Ahmed, S. and Al-Quadir ,Z. (2018): Epidemiology of hypertension among Bangladeshi adults using the 2017

ACC/AHA Hypertension Clinical Guidelines and Joint National Committee 7 Guideline, Jour Hypertens, 32, 668-680.
9. McLachlan, G.J.: Discriminant analysis and Statistical Pattern Recognition, Wiley Interscience, 2004, ISBN 978-0-471-69115-0.
0. https://www.researchgate.net/profile/Keshab Bhuyan/publication/349891482 Identification of Socioeconomic Variables R esponsible for Prevalence of Hypertension among Bangladeshi Adults/links /635014c212cbac6a3eda596d/Identification-of-Socioeconomic-Variables-Responsible-for-Prevalence-of-Hypertension-among-Bangladeshi-Adults

1. Bhuyan, K.C. : A note on the application of discriminant analysis in medical research, Archives of Diabetes and Obesity, 2019, 2(2),142-146.
2. Gelber, R.P.; Kurth, T.; Kausz, A.T.; Manson, I.E.; Burning, J.E.; Levy, A.S. and Gaziano, I.M. (2005): Association between BMI and CKD in apparently healthy men, Amer Jour Kidney Disease, 46, 871 - 880.
. Biswas, T.; Islam, S.M.S. and Islam, A. (2016): Prevention of hypertension in Bangladesh: A review, Jour Med., 17, 30-35.
3. Mennuni, S.; Rubattu, S.; Pierevelli, G.T.; Fofi, C. and Volpe, M.(2014): Hypertension and kidneys: unrevelling complex molecular mechanisms underlying hypertensive renal damage, Jour Human Hyperten, 28, 74-79.
4. Vettoretti, S.; Caldiroli, L.; Zanoni,F.; Azzimi, V.; Villarini, A; Meazza, R. and Messa, P.(2018): Patients with hypertensive nephropathy and chronic kidney disease might not benefit strict blood pressure control, Kidney Blood Pressure Research, 43, 1706-1715.
Palmer, B.F.(2002): Renal dysfunction complicating the treatment of hypertension, N. Engle Jour Med., 347, 1256-1261.
Magrico, R.; Bigotte, V.M.; Viegas, D.C.; Leitao, L. and Neves, I.S.(2018): B.P. reduction, kidney function decline, and cardiovascular events in patients without chronic kidney disease, Clin Jour Amer Soc Nephrol, 13, 73-85.

Ready to submit your research? Choose Alcrut and benefit from:
> fast, convenient online submission
> rigorous peer review by experienced research in your field
$>$ rapid publication on acceptance
> authors retain copyrights
$>$ unique DOI for all articles
> immediate, unrestricted online access

At Alcrut, research is always in progress.

Learn more: https://alcrut.com/en/journals/clinical-and-medical-research-and-studies

is work is licensed under creative commons attribution 4.0

To submit your article Click Here: Submit Manuscript

