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Introduction: 

Ovarian Cancer(OC) portrays the third most frequently 

encounteredgynaecolgical malignancies, of the female reproductive 

system,whosediagnosis had been made as well as possesses greater 

mortality rates offull gynaecolgical tumor spectrum [1]. In view of 

itspernicious characteristics at the time of earlier stages, maximum of 

patients with OC get diagnosis made at substantially advancement 

stage of the OC to start with at the time when primary debulking 

surgery, adjuvant chemotherapy, radiotherapy, immunotherapies are 

not devoid of their inimical sequelae which has been a well displayed 

fact inclusive of recurrencerates, metastasis, resistanceto 

chemotherapy, thereby OCisassociated with substantially greater 

mortality rates[2]. In view of the escalating incidence in each year 

with escalating young persons generating OC [3,], the requirement of 

generating innovative methodologies in addition tobiomarkers which 

might aid in earlier determination along with greaterefficacious 

therapies subsequent to diagnosis is assuming considerable 

significance [4].  

Ferroptosis portrays a kind of cell demise, unique from other kinds of 

programmed cell death for instan ceapoptosis, autophagy in addition 

to necroptosis where ROS along with lipid peroxides (LPO) accrual get 

generated by iron metabolism as well as their for generating fatal 

toxicity in view of cells are not capable of metabolizing the min a 

smooth manner[5]. Whereas canonicaltreatments generally deplete 

tumor cells by stimulating cell death for generation of resistanceit has 

assumed considerable significance for scientific researchers for 

cancer treatment, acknowledged its part in controlling cell demise [6]. 

Variable studies have illustrated that ferroptosis is correlated with 

resistance to cancer therapies, which might beplausibly involved in 

aiding in reverting resistance to cancer therapies [7]. Once further 

advancements of scientific research occurred invention of ferroptosis 

proved tobecrucial in plethora of variety of diseases inclusive of 

Breast cancer (BC),pancreaticcancer, neurological diseases, 

cardiovascular disease(CVD) alongwith kidney diseases,and 

others[8].Of these,ferroptosis is maximum intricately correlated with 

malignant tumors in addition totumor cells possesspronounced 

sensitivity to ferroptosis[9]. Ferroptosis possesses the capability of 

controlling the generation of OC via variable mechanistic modesor 

etiological factors, therefore escalates the sensitivity of OC cells 

towards ferroptosis targeted therapeutics, as well as taking care of 

chemotherapy resistance [10], therefore escalating the effectiveness 

of chemotherapeutic agents for the treatment of OC [11]. 

Furthermore, a correlated study has displayed that the fashion of 

immune infiltration in addition to correlated genetic characteristic of 

ferroptosis, plausibly might be used for anticipation of prognosis of 

OC cases [12]. Utilization of combination of ferroptosis with 
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chemotherapy, nanotechnology, X-raytherapy along with photo 

dynamic therapy have been displayed to result in improvement of 

therapeutic effectiveness[13], that yield plausible targets as well as 

generating innovative therapeutic trajectories for ferroptosis in 

reference to OC management.  

 

The endoplasmic reticulum (ER) stressis implicated in 

lipidmetabolism, controlling of Ca2+ , in addition toprocessing of 

protein, their folding along withtransportation, thatportrays a 

significant organelle in case of eukaryotic cells[14]. ERstress 

(ERS)gets stimulated in cells by hypoxic 

situations,ii)geneticmutations,iii) insufficiency of nutrients as well as 

iv)oxidative stress( OS), that resultsin accrual ofmisfolded in addition 

to unfolded proteins in thelumen ofER causing activation of the 

unfolded protein responses(UPR) for taking care of the external 

milieu, which isunattractive[15]. Nevertheless, sustenance of greater 

magnitude of ERS leads to cell demise, once threshold for tolerance of 

ERS gets crossed[16], possesses the capability of resultingin 

generation of variable diseases forinstance cancer, atherosclerosis, 

diabetic retinopathy, in addition toischaemic nephropathy[17]. The 

inimical tumor microenvironment( TME) for tumor cells in view of 

greater metabolic needalong withOS,of rest disrupts ERhomeostasis 

in the immune cells that has the capability of influencing protection 

conferring anticancer immunity[18]. Yan et al. [19], illustrated that 

targeting the germane pathways in ERS are capable of hampering the 

proliferation of OC cells along with decrease chemotherapy 

resistance[19]. Thereby ERS is crucial in the formation as well as 

forOS therapy. 

Different studies have illustrated that ferroptosis in addition to ERS 

possess theakin controlling pathways, along with the two possess the 

capacity of changing the generation of variable diseases by 

crosstalking witheach other[20-22].  

Earlierwe reviewed the cell death mechanisms as plausible 

therapeutictargets for BC, role of melatonin as a future prospective 

therapyfor treating nonalcoholic fatty liver disease(NAFLD) 

bytargeting hepatic ferroptosis ,and its part in treating diabetic 

kidney disease(DKD) [23-25]. Here we further update 

themechanistic modes of ferroptosis along with ERSin OS as well 

asthe plausiblegermaneness of the twoof them for emphasizing the 

generation of innovative approaches in addition to 

plausibletargetsforOC therapy .  

 

Methods 
Here we conducted a narrative review utilizing search engine 
pubmed,google scholar ;web of science ;embase;Cochrane 
reviewlibraryutilizingthe MeSH termslike endoplasmic reticulum 
stress(ERS); ovarian cancer(OC); unfolded protein responses(UPR); 
ferroptosis; glutathioneperoxidase 4 (GPX4); lipid peroxidation; 
Divalent metal transporter(DMT); Ferritin ; Oxidative stress( OS); 
Ferritinophagy ; AMPK; nuclear factor erythroid-2-related factor-
2((Nrf2) /Kelch-like-epichlorohydrin (ECH)-associated protein 1 
(KEAP1); Herbal products; curcumin analogs ; melatonin from2000 to 
2025 till date.  
Results  
We found a total of 2000 articles out of which we selected190 articles 
for this review.No meta-analysis was done. 
 

 

2. Ferroptosis in case of OC  

 

Ferroptosis portrays a kind of programmed cell death that possesses 

the properties of escalated accrual of iron, lipidantioxidation along 

with lipid peroxidation [26]. OC casesgenerally display chemotherapy 

resistance which is intricately associated with ferroptosis[27]. 

 

2.1 Iron metabolism in case of OC  

Iron portrays one of the imperative trace elements that possess 

significant part in human growth as well asgeneration, energy 

metabolism in addition to working of the immune system[28]. 

Aberrations of the iron metabolism influenceredox reactions,ii) 

genecontrolling,iii) enzymatic reactions iv) DNA generation in 

addition to healing[29]. Iron possesses complicated nature along with 

comprehensive circulating mechanistic modes for guaranteeing its 

appropriate organization, utility as well asstorage for sustenance of 

precise in addition to nontoxic cellular iron quantities in human body 

[30]. Existence of iron in human body is in the form of 2 kinds off erric 

iron (Fe 3+) along with Fe 2+, as well as there is presence of variable 

transporters/ modes based on variable iron kinds. Dietary iron 

ingestion/day is inclusive of haem iron in addition tononhaem 

iron[31]. Once they reach theintestinal lumen in the form of Fe 3+ their 

reduction takes place to Fe 2+,by duodenal cytochrome- B fortheir 

absorption,where nonhaem iron absorption takes place in the 

intestine through divalent metal transporter(DMT)1 protein [32] . 

Transportation of heme iron subsequently takes place to duodenal 

epithelium through haem protein 1 followed by itsabsorption, 

internalization, degradation into Fe 2+, in addition to hemeoxygenase-

1(HO1) [33]. Following that iron might continue to stay in 

theenterocytes or gain entry into the blood stream from basolateral 

membrane of the intestinal epithelial cells through membrane iron 

transporter protein 1, whereas undergoingoxidation 

byferrousoxidaseorceruloplasmin for forming Fe 3+ [34]. On gaining 

entry into the blood stream, plasma transferrin(TF) guarantees 

precise organization of Fe 3+ right through the cells of human body for 

utilizationby variable organs for forming iron possessing constituents 

via TF receptor(TFR) modulatedholoTF endocytoses [35].For 

instance, hepaticgeneration of hemosiderin takes place, whereas 

myoglobin gets generated in the muscle tissue, with the Bone marrow 

contributing to thedevelopment of the redblood cells(RBC) 

possessinghaemoglobin. Iron uptake gets facilitated in cells basically 

via the TF along with TFR systems, as well as Fe 3+ gets reduced to Fe 
2+,by ferric oxidereductase, whosebinding takes place to ferritin, to 

generate storage iron, with the little percentage gaining entry into 

thecytoplasm which overallcontributes to the labile ironpool(LIP) 

[36]. In view of instability in addition to greater susceptibility to 

oxidation of Fe 2+, escalated iron ions causethe generation of reactive 

oxygen species(ROS) , thatfacilitates lipid peroxidation via the Fenton 

reaction[37], therefore resultingin oxidative injury to the lipid 

membranes, proteins along with DNA eventually resultingin cell 

demise[38]. Out of the 3 mechanistic modes of ferroptosis,escalated 

accrual of Fe 2+, in the LIP iron escalates the sensitivity of cells to 

ferroptosis as well as portray the starting constituents implicated 

inferroptosis generation[36].  

The starting step of ferroptosis has notbeen isolated till now, however 

ferroptosis has been intricately associated with the intracellular 

quantities of free iron[39].Iron metabolismworksin the form ofa 

crucial pathophysiology of OC, in addition to the magnitude of 

intracellular iron accrual functions as possessing amajor part in the 

time period of OC[40]. Concomitantly aberrations in the iron 

metabolism, particularly the attaining of iron accrual along with 

sustenance of enhancediron aid in theevent of tumorigenesis as well 

astumorgrowth[41]. Iron accrualescalatesthe risk 

ofgenerationofdiseases forinstance cancer in addition to injury to 

tissues[42]. Thereby sustenance of intracellulariron ions homeostasis 

is crucial.As per Basuli etal. [43], OC starting cells, display greater iron 

reliance. Escalated iron export further diminished the proliferation 

along with invasion of OC starting cells as well as on the other 

hand,escalated iron uptake escalatesOC proliferation along with 

invasion[43]. Starting of high grade serous ovarian cancers(HGSOC) 

canonically occursfrom thefallopian tubes with diagnosis usually 

postponed till FIGOstageIII-IV in view of its asymptomatic 

presentation,in addition to iron quantities of HGSOC have been found 

to be correlated with greater in contrast to low grade serous Ovarian 

Cancer (LGSOC), pointing that HGSOC along with iron metabolism are 

robustly correlated [44]. Additionally, the malignant conversion as 
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well asmetastasis of cancer cells are intricately correlated with 

alterations of cellularredox status[45]. The molecular injury resulting 

from escalated quantities of inimical reactive oxygen species(ROS) 

ROS which gets catalyzed by free iron is usually knownas ‘’oxidative 

injury’’ as well as Bauckman etal. [46], displayed that ROS possesses 

the capability of conversion normal ovarian by facilitating the mitogen 

activated protein kinase(MAPK) pathway. Apart fromthat ROS 

possess the capacity of hydroxylating DNA residues for the formation 

of substantially mutagenic 8 hydroxy-2’ deoxy 

guanosine(8OHdG),whose quantities have been observed to be 

correlated with badprognosis in case of HGSOC patients[47]. Binding 

of iron polyporphyrinheme occurswith p53, that resultsin 

disturbance of p53-DNA crosstalk, that results in nuclear export as 

well as cellularbreakdown of p53 in addition toescalated proneness to 

HGSOC[48]. Basuli etal. [43],reported that escalated iron concurrently 

influenced tumor cell proliferation, metabolism along with metastasis. 

Enhancing the expression of ferroportin on cell membranes [49], 

diminishing iron consumption[50],or diminishing the quantities of 

TF[51], along with TFR in vivo [52], possesses the capability of 

hampering tumor growth . Apart fromthat iron metabolism has the 

capacity of generating OC by controlling Hypoxia inducible 

factor1α(HIF 1α). HIF 1αstimulates the propagation of OC 

byhampering the working of p53, facilitating Interleukin (IL-6) 

expression, or getting controlled by Longnon coding RNAs(lnc RNAs) 

[53]. Iron metabolism further is intricately associated with 

chemotherapy resistance as well as solutecarrier 

familygeneration40members 1 (SLC40A1), that is an iron metabolism 

associatedgene, portrayingthelone acknowledgedgene that exports 

iron[54],thatpossesses a critical part in the transportation of iron 

from the intracellular milieu to the extracellular milieu, thereby 

physiological expression of SLC40A1 possesses a critical part in the 

controlling of iron homeostasis. SLC40A1 stimulated iron overload 

resultsin cisplatin chemotherapy resistance in OC[55]. SLC40A1 

upregulation diminishes cisplatin resistance by iron export, 

diminishing intracellular iron quantities in addition to OS. In contrast 

to that escalated iron quantities along with OS resulting fromSLC40A1 

downregulationescalates cisplatin resistance[55]. Thereby 

modulation of iron quantities for affecting redox systems might be a 

plausible approach for reverting chemotherapy resistance in OC.  

 

Theiron based quality of OC tumor starting cells further escalates their 
sensitivity to ferroptosis in addition to ironchelators, which 
yieldthemas plausible therapeutic targets for OC therapy [56].A 
natural ironchelatordesferrioxamine[72], has beenutilized for iron 
overload, has demonstrated favourableoutcomesfor OC therapy.Wang 
etal. [57],investigated the actions of desferrioxamine on OC cancer cell 
lines as well as their observations were that desferrioxamine apart 
from hamperingcancerstem cells, they further escalated effectiveness 
of cisplatin chemotherapy, resultedin improvementof chemotherapy 
resistance along withcontinuation of time ofsurvival. Furthermore, 
there is proof of other agents whichcontrol iron metabolism as well as 
might possess actions on other biological events. Forinstance the 
antimalarialdrug artemisinin, has been recognized forits antimalarial, 
anti inflammatory in addition to anti tumor actions in addition to its 
compounds(forinstance artemisunate) possesses the capability of 
diminishing cell proliferation as well as stimulate ROS generation in 
the OC cells[58]. Artemisunate has the capability of 
activatinglysosomal working ,resultingin facilitating breakdown of 
ferritin, resultingin liberation of iron in lysosomes, therefore 
modulatingcell demise[59]. Controllers, inclusive of iron uptake 
associatedcontrollers[60], iron storage associatedcontrollers[61], 
along with iron transportation associatedcontrollers[62], impact the 
events of OC via the controlling of iron metabolism quantities. 
2.2 Lipid peroxidation in case of OC  
Ferroptosis portrays a kind ofcell demise, unique from other kinds of 
programmed cell death forinstanceapoptosis, autophagy in addition 
to necroptosis resulting from membrane lipid peroxidation along with 
considerable accrual of ROS[63]. Additionally,membrane lipids 
possess a significant part in the controlling of the fateof cell as well as 
lipid metabolism thatiselemental in estimating the 

fateofferroptosis[64], in addition to is crucial forimplementation 
offerroptosis.  
Out of the different lipids , polyunsaturated fatty acids(PUFA), along 
with variable phospholipids(PL’s) forinstance 
phosphatidylethanolamine (PE ), as well asphosphatidyl cholineare 
implicated in lipid peroxidation in case of ferroptosis .PL’s thatpossess 
PUFA’s have greater proneness for oxidation, however lesser 
oxidizable saturated fatty acids /monounsaturated fatty acids 
conferred protection to the cell from ferroptosis[65]. Thereby the 
enzymes along with pathways implicated in controlling PUFA’s in 
addition to monounsaturated fatty acids metabolism, apart from 
equilibrium of PUFA’s in addition to monounsaturated fatty acids in 
membrane PL’s, are capable of affectingcellular sensitivity to 
ferroptosis[66]. The observations of the above-mentionedfact 
yieldsinnovative approach for the therapy of lipid peroxidation in case 
of OC ferroptosis. In view of membrane PL’s of PUFA’s which 
guideROS generation catalyzed by iron ions, crosstalk with PUFA’s are 
implicated in stimulating lipid peroxidation that resultsincellular 
ferroptosis, as well asnotjustby free PUFA’s by themselves, the 
enzymes which are involved in the binding of the free PUFA’s to PL’s, 
possess a critical partin ferroptosis[66]. Acyl-CoA synthetase long-
chain family member 4 (ACSL4) portrays animperative constituent of 
ferroptosis achievement, the manner displayed by microarray 
evaluationof cell lines with resistanceto ferroptosis along with 
utilization of genome wide clustered regularly Interspersed 
shortpalindromic repeats nuclease(s) (CRISPR) dependent screening 
system[67]. ACSL4 catalyzes free long chain fatty acids(LCFAs) to 
Acyl-CoA by associating them with CoA.Inserting Acyl-CoA into 
membrane PL’s followed by binding to the PE to generate PUFA’s PL’s 
,gets catalyzed by the enzymelysophosphatidylcholine 
acyltransferase 3 (LPC AT3) [68].In reference to mechanistic modes,2 
basically modesareimplicated i) non enzymatic spontaneousoxidation 
as well asii) enzymes modulated lipid peroxidation[69], leading to the 
formation of phospholipid-peroxide (PL-OOH) in addition to once 
converting of PL-OOH does not takes place to phospholipidhydroxide 
(PL-OH ) by antioxidantsin the required time it leadsto considerable 
accrual of PL-OOH, which resultsin considerable lipid peroxidation 
along with activation of the antioxidant system, stimulating injury to 
the cell membrane, eventually resultingincell impairment as well as 
ferroptosis[70]. Non enzymatic lipid peroxidation alias lipid 
autooxidation represents free radicals guided chain reactions . 
Reaction of hydrogenperoxide(H2O2)with Fe 2+, resultsin 
theformation ofhydroxyl radical (OH)-* , whose reaction takes place 
with PUFA’s in the plasma membrane(PM) in the Fenton reaction for 
generating lipidperoxides (LPO) resulting in ferroptosis[71,72]. 
Therebyescalated accrual of LPO is imperative for escalating the 
effectiveness of ferroptosis [73], in addition to OH-* portray 
themaximumactive ROS [74], therebyit works in the form of an 
innovative therapeutic target forthe OC treatment through 
chemodynamic therapy(CDT). H2O2 nano enzymes generated in cells 
by Sun etal. [75], by utilization of CoNi alloysencapsulated nitrogen 
doped carbonnanotubes displayed glucose oxidase as well as lactate 
oxidaseactions for efficaciously interfering with the antioxidant 
defense system by catalyzing the OH-*generation, escalating the ROS 
quantities in the tumor microenvironment( TME) in addition 
toinjuring tumor cells, whereas eliminatingglutathione(GSH) for 
stimulating ferroptosis in the tumor cells[90]. Liang etal. [76], 
illustratedpoly dopamine(PDA)- modulated Michael additionin 
combination with Fe 2+- elimination of GSH, escalated accrual of OH-*, 
eventually led to escalated intracellular liberation of 
chemotherapeuticagent Doxorubicin (DOX), thereby stimulating 
ferroptosis [76]. Additionally,lipid peroxidationis robustlyassociated 
with variable metabolic along with signaling pathways forinstance 
cytochrome P450 oxidoreductase(POR) pathway as well as enzymes 
which possessiron inclusive of lipooxygenases(LOX) further aids in 
lipid peroxidation[77]. On the other hand, enzymatic lipid 
peroxidation representsan event that directly implicates oxidation of 
free PUFA’s into different kinds of lipidhydroperoxides catalyzed by 
LOX[78]. Out of these, the arachidonate familylipooxygenase(ALOX) 
control lipid peroxidation. Binding of5 LOX to the microsomal GSH-S 
transferase 1resultedin diminishedlipid peroxidation in addition to 
modulated ferroptosis in the cancer cells[79]. On the other hand, Chu 
etal. [80], found that ALOX12 (alias LOX12) manipulated lipid 
peroxidation was involved in p53 based ferroptotic reactions in case 
ofROS stimulated stress [80], whereas the expression quantities of 
arachidonate family 15 lipooxygenase (ALOX15), are correlated with 
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spermidine/spermine acetyltransferase (SAT1) gene, a 
transcriptional target of p53[81]. Zhang etal. [82], illustrated that the 
chemotherapeutic agents for OC stimulated escalated lipid 
peroxidation via ROS starting ovarian cells ferroptosis, thereby 
resulting in ovarian cell demise [82].Asper Xuetal. [83], p53 works in 
the form of a significant factor in the ferroptosis event [83]. p53 
displays bidirectional controlling actions dependent on particular 
situations of encompassing milieu. In case of lesser quantities of lipid 
peroxidation p53 hampers the event of ferroptosis, facilitating cell 
survival. Nevertheless, on continuation of escalated lipid 
peroxidation, ferroptosis is stimulated [83].  
Taken together, future studies on the actions of variable lipid 
metabolic pathways regarding lipid peroxidation along with 
regarding ferroptosis from the point of view of chemotherapy 
stimulated OS as well asferroptosis might aid in regulating ovarian 
injury, causing improvementof quality of life (QOL) of OC patients 
might aid in gettinginsight regarding ferroptosis in addition to 
therapeutic OC. 
2.3 Lipid antioxidation in case of OC  
Oxidative injury takes place in view of disequilibrium amongst 
cellularantioxidant system with thegeneration of the free radicals in 
addition to neutralization or depletion of their inimical actions. ROS 
modulated lipid peroxidation, portrays a critical step in 
guidingcellular ferroptosis along withinactivation of antioxidant 
system portrays the basic etiological factor of ferroptosis[84]. 
Currently it has been illustrated that the basic antioxidant system 
controlling ferroptosis is inclusive of i) System Xc (-) -glutathione 
(GSH) -glutathione peroxidase4(GPX4) pathwayii) ferroptosis 
suppressor protein 1 (FSP1)/ - coenzyme Q10 (CoQ10) pathwayiiI) 
GTPcyclohydrolase1(GCH1)- Tetrahydrobiopterin (BH4) pathway 
IV)dihydroorotate dehydrogenase(DHODH) -CoQH2 pathway. Out of 
these,System Xc (-) -glutathione(GSH) -glutathioneperoxidase4(GPX4) 
pathway portrays the maximum elemental antioxidant system that 
possesses the crucial part in conferringprotection 
ferroptosis[85].Figure 1yields asummaryof basic antioxidant system 
controlling ferroptosis[rev in ref 86]. 

 
Legend forFigure1 
Courtesy reference no-86Primary antioxidant systems regulating 
ferroptosis. System Xc−-GSH-GPX4: Cystine is oxidized to cysteine 
through the System Xc-, which leads to the synthesis of GSH, and 
GPX4 reduces PLOOH to PLOH with the participation of GSH, which 
induces the onset of ferroptosis when GPX4 is inhibited. FSP1-
CoQ10-NADPH: FSP1 promotes the transfer of CoQ10 from 
mitochondria to the cell membrane by myristoylation of the N-
terminus with the participation of CoQ10 and its reduction to 
CoQ10H2 catalyzed by NADPH, which prevents cellular ferroptosis by 
trapping free radicals. GCH1-BH4-DHFR: GCH1 is the rate-limiting 
enzyme for the biosynthesis of BH4. BH4 acts as a free radical-
trapping antioxidant, inhibiting ferroptosis. It is recycled by DHFR 
and subjected to redox cycling. DHODH-CoQ10H2: DHODH is located 
on the outer surface of the inner mitochondrial membrane and 
inhibits cellular ferroptosis by reducing lipid reactive oxygen species 
in mitochondria by reducing CoQ10 to CoQ10H2. Supplementation 
with DHODH substrates or products (DHO or OA) regulates cellular 
ferroptosis. BH2, dihydrobiopterin; BH4, tetrahydrobiopterin; 
CoQ10, CoQ10, coenzyme Q10; CoQ10H2, ubiquinol-10; DHFR, 
dihydrofolate reductase; DHO, dihydroorotate; DHODH, 
dihydroorotate dehydrogenase; FSP1, ferroptosis suppressor protein 

1; GCH1, guanosine triphosphate cyclohydrolase 1; GSH, glutathione; 
GPX4, glutathione peroxidase 4; OA, orotate; PLOH, phospholipid 
hydroxide; PLOOH, phospholipid hydroperoxide; PUFA, 
polyunsaturated fatty acid; SLC3A2, solute carrier family 3 member 
2; SLC7A11, solute carrier family 7 member 11. 
2.3.A- System Xc (-) -glutathione (GSH) -
glutathioneperoxidase4(GPX4) pathway- 
This possesses the crucial part regarding antioxidant defence 
mechanistic modes of ferroptosis. System Xc (-)portrays a cystine- 
glutamate reverse transporterreceptor) protein that is constituted ofa 
dimer of solutecarrier familygeneration7member 11 (SLC7A11), 
along with SLC3A2 that has placement on the cell membrane[85]. 
System Xc (-) oxidizes intracellular cystine to cysteine that further 
causes transformation to GSH [87]. In contrastGPX4, confers 
protection to the cells against ferroptosis by diminishing PL-OOH 
transformation to PL-OH which has no toxicity, that 
implicatesGSH(the reducingcofactor for GPX4) [88]. Hampering of 
GPX4 stimulateslipid ROS as well as stimulated starting offerroptosis, 
therefore hampering tumor cells proliferation[90].  
Studies have illustrated that erastin[27], 
sorafenib[91],sulfasalanazine[92], in addition to p53[93], hadthe 
capacity of generating GSH stimulateferroptosis by hampering System 
Xc. Metallothionen-1Gportrays a crucial factor as well as plausible 
therapeutictarget for controlling sorafenib resistance in human 
hepatocellular carcinoma(HCC) . Downregulation of metallothionen-
1G escalated lipid peroxidation along with GSH elimination 
,resultingin ferroptosis in HCC[91]. Utilization of an innovative 
strategy was done by Yuan etal. [94], byusing a combination of 
chemotherapy as well as chemodynamic-therapy, that hampered 
malignant cells proliferation by inactivation of GPX4 by stimulating 
GSH elimination, in addition to astrategy that illustrated extensive 
magnitude of biosafety. Luo etal. [95], observed that paired box8( 
PAX8- that portrays a GPX4 based OC prone gene) elimination, 
resulted in escalated sensitivity to GPX4 hampering agents. A 
combination of PAX8 hampering agents in addition to RSL3, 
hampered proliferation along with stimulated ferroptosis inOC 
cells[95]. Apart fromt hat, System Xc (-) - GSH) - (GPX4) pathway 
portrays a crucial antioxidant system, causing avoidance of lipid 
peroxidation modulated ferroptosis as well as blockade of such 
pathway facilitate the initiation of ferroptosis in stimulating 
chemotherapeutic resistance[96]. Okuno etal. [97], displayed that 
System Xc (-)portrays a transporter that is implicated in cystine in 
addition to glutamate transport possesses a controlling part in 
intracellular GSH quantities along with cisplatin resistance in 
OCcelllines[97].Their outcomes illustrated that OC cells in the 
cisplatinresistant variant possessed a4.5 time greater cystine uptake 
as well as intracellular GSH quantities in contrast to OCcelllines in 
view of their attaining cystine transporteraction that gotmodulated by 
System Xc (-):nevertheless, the GSH quantities diminishedsubsequent 
to glutamate over dosage . Cystine uptake was further hampered. 
Thereby it gets pointed that System Xc (-)possesses a significant partin 
the sustenance of greater GSH quantities in addition to hasthe capacity 
of conferring cisplatin resistance in OC celllines. Apart fromthat, a 
study has illustrated that liberation of GSH along with cysteine in case 
ofOC fibroblasts aid in the diminishing of nuclear accrual of 
platinum[97]. Furthermore, CD8+T cells are capable of hampering 
resistance by controlling GSH as well as cysteine metabolism in 
fibroblasts[98].  
 Collectively, these suggest that hampering of System Xc, elimination 
of GSH in addition to diminishing of GPX4, together modulate 
metabolic events that are implicated in amino acids which escalate 
sensitivity to ferroptosis hampering agents, as well as targeting such 
systems might have the capacity of reverting chemotherapeutic 
resistance in addition to diminish the OC propagation.  
2.3.B Ferroptosis suppressor protein 1 (FSP1)/ - coenzyme Q10 
(CoQ10) pathway  
Bersuker etal. [99], isolated FSP in the form of arobust resistance 
factorto ferroptosis, indicating that FSP- CoQ10- nicotinamide 
adenine nucleotide phosphate(NADPH )pathway is independent of 
the canonical System Xc- GSH- GPX4 pathway, emphasizingone extra 
pathway implicated inantioxidant controlling of ferroptosis, pointing 
that its pharmacological hampering might escalate sensitivity of 
cancer cells to ferroptosis stimulating chemotherapeutic agents. FSP1 
portrays a crucial protein which results in avoidance of cells going 
through ferroptosis, along with FSP1 knock out (KO) escalate 
sensitivity cell lines to ferroptosis stimulating agents in addition to in 
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the form of a controller of mitochondrial apoptosis. Enrollment of 
FSP1 takes place toPM, through myristoylation (a fatty acid 
modification acknowledged to work in membrane targeting), 
therefore hampering ferroptosis[99,100]. Basically FSP1 iscorrelated 
with outer mitochondrial membrane(OMM) as well asgoesthrough 
myristoylation, at the N terminalend for facilitating transportation of 
CoQ10 from mitochondria to the cell membrane. The reduction of 
CoQ10 to the Ubiquinol (CoQ10H2) leads to trapping of the free 
radicals, modulating lipid peroxidation, in addition to thereby 
avoidance of ferroptosis of cells[99]. Additionally,ithas been 
illustrated that subsequenttoStearoylCoA desaturase 1 
downregulation, diminishing of lipophilic antioxidant CoQ10, that 
stimulatesthe plausibility for ferroptosis by hampering intracellular 
formation of lipids that confersprotection . Hampering of StearoylCoA 
desaturase 1 escalated the antitumor actions of ferroptosis 
stimulators in case of OCcelllines. Combination of StearoylCoA 
desaturase 1 hampering agents with the ferroptosis stimulators might 
yieldan innovative approach for the treatment of OC[101]. The small 
molecule hampering agent FIN56 hampers CoQ10formation in the 
mevalonate pathwaysubsequenttobinding followed by activation of 
squalene synthase leadingto diminished CoQ10 quantities, therefore 
escalating ferroptosis sensitivity [102].  
Yang etal. [103], generated nanogels that escalated cellularlipid 
peroxidation via hampering FSP- CoQ10- NADPH pathway, resultingin 
ferroptosis of immunogeniccells along with leadingto efficacious 
tumor attrition as well as immune reactions in mouse model of breast 
cancer. Furthermore, FSP1 downregulation inHCC facilitated 
sorafenib stimulated ferroptosis [104]. 
Thereby, FSP- CoQ10- NADPH )pathway, might becomplementary as 
well as act with the System Xc GSH- GPX4 pathway for hampering lipid 
peroxidation in ferroptosis, yielding plausible therapeutic approach 
for the treatment of OC . 
 2.3.C. GCH1)- BH4- dihydrofolate reductase (DHFR) pathway-  
An earlier study isolated the GCH1- BH4- DHFR pathway in the form 
of alternative complementary mechanistic mode for System Xc - GSH- 
GPX4 pathway [105]. GCH1 portrays a rate restricting enzyme 
regarding BH4 generation, that facilitates ferroptosis through the 
metabolites BH4 in addition to dihydrobiopterin (BH2). BH4 in the 
form of free radicals trapping antioxidant, is capable of getting 
recycled by DHFR for redoxcycling, along with BH4 possesses the 
capability of antioxidant breaking down actionson 
phospholipids(PL’s), thatpossesstwo PUFA tails as well asavoidance 
of lipid peroxidation in addition to thereby ferroptosis by hampering 
the generation of LPO’s[105]. 
Viadirect trapping of antioxidant free radicals along with generation 
of CoQ10[105], once GCH1 upregulation takes place,it facilitates BH4 
generationas well asmitigates the inimical actionsof RSL3 stimulated 
cellular ferroptosis. Furthermore, GCH1 overexpression has been 
illustrated to diminish the sensitivity of cancer cells that have 
chemotherapy resistance to ferroptosis, that inturn further 
attenuated propagation of ferroptosis of cancer cells via controlling of 
CoQ10 [106].  
Apart from that, germane studies have illustrated involvementof BH4 
in dopamine generation, nitric oxide synthase (NOS), as well as 
melatonin[107], while exogenous dopamine or melatonin , hadthe 
capacity ofhampering ferroptosis[108]. Variable studies have 
illustrated that nitric oxide (NO), possesses the capability of 
hampering ferroptosis in tumor cells based 
encompassingmilieu[109,110]. DHFR diminishes BH2 in cells 
viaimplicatingNADPH , therefore facilitating generation of BH4. In 
case ofhampering ofDHFR, tumor cells ferroptosisgets 
facilitatedthrough synergistic actions of GPX4 hampering agents[72].  
Thereby the GCH1- BH4- DHFR pathway possesses crucial part 
regarding controlling equilibrium amongst oxidative injury in 
addition toantioxidant defense at the time of ferroptosis along with 
crosstalks with the System Xc GSH- GPX4 pathway as well as FSP- 
CoQ10- NADPH pathway in a synergisticor complementary fashion. 
Despite, other mechanistic modes as well as plausible 
therapeutictargets continue tobe estimated, the isolated plausible 
therapeutictargets mightbeutilizedfor getting chemotherapeutic 
resistance in case of OC. 
2.3.D. Mitochondrial dihydroorotate dehydrogenase(DHODH) -
CoQ10H2 pathway. DHODH- CoQ10H2 pathway 
Themitochondrial DHODH- CoQ10H2 pathway in addition toFSP- 
CoQ10- NADPH pathway portray thetwo main lipid antioxidant 
systems in mitochondria. In case of hampering ofone of the systems, 

the cell generates greater dependance onthe other antioxidant 
systems, along with once hampering ofbothsystemsoccur 
,mitochondrial lipid peroxidation takes place, leadingto 
ferroptosis[110].  
CoQH2, portrays free radicals trapping antioxidantpossessing 
antiferroptotic actions. DHODH placement is onthe outer surface of 
innermitochondrial membrane(IMM), as well ashampers ferroptosis 
by transformation of CoQ10 to CoQ10H2 for diminishing lipidsin 
mitochondria. Dihydroorotate/orotate/ 
substratesorDHODHproductssupplementation mitigated/escalated 
the hampering actions of GPX4 respectively, 
therebymodulatingcellularferroptosis[111].  
The mitochondrial DHODH- CoQ10H2 pathway in addition toFSP- 
CoQ10- NADPH pathway work independently of each other , however 
both resulted in reduction of CoQ10 to CoQ10H2 for escalating the 
mitochondrial defense mechanistic modes against ferroptosis. 
3.ERS 
On getting challenged by inherent factors for instance oncogenic 
activation, changed chromosome numbers or escalated capability of 
liberation, along with extrinsic factors for instance deprivation of 
nutrients as well as acidosis, changed protein homeostasis result in 
accrual of misfolded in addition to unfolded proteins in the lumen of 
ER, causing activation ofERS in addition to UPR, therefore restoration 
of homeostasis in cells[19]. Nevertheless, in case of continuation 
ofERS/ robust stimuli,UPR threshold getsovertaken, cell 
demiseresults, which inturn results in cancer generation[112].  
Starting of UPR occurs by three main ERS sensors, with their 
placement in the ER membrane, inclusive of inositol requiring enzyme 
protein 1α (IRE1α), Protein kinase R-like endoplasmic reticulum 
kinase (PERK) along with activating transcription factor6(ATF6) 
[113]. TheER chaperone binding immunoglobulin protein (BiP) works 
in the form of master controller of the UPR binding as well as 
inactivating the three ERS sensors, IRE1α, PERK in addition to 
ATF6[113], negative controlling them along with guaranteeing their 
inactivating status. Onaccrual ofmisfolded proteins in the lumen ofER 
,their binding occurs to the hampering chaperone BiP as well as 
separate it, activating the three ERS sensors for starting of UPR 
signaling[114]. Fig2 details ERS.  

 
Legend for Figure2 
Courtesy reference no-86Mechanisms of ERS. Accumulation of 
unfolded or misfolded proteins in the lumen of the ER activates three 
transmembrane proteins of the unfolded protein response (IRE1, 
PERK and ATF6) and thereby restores cellular homeostasis. IRE1: 
Activation of IRE1 kinase results in the excision of an intron in the 
mRNA encoding the XBP1 transcription factor, and ligase mediates 
the linking of two mRNA fragments to produce stably active XBP1s. 
Stable XBP1s activity is involved in subsequent ER biogenesis. PERK: 
GADD34 forms a loop by regulating eIF2α dephosphorylation, 
thereby modulating ATF4-mediated ER biogenesis. ATF6: ATF6 is 
translocated to the Golgi under conditions of ERS and is sequentially 
hydrolyzed by S1P and S2P proteins, thereby regulating ER 
biogenesis. ATF4, activating transcription factor 4; ASK, apoptosis 
signal-regulating kinase; ATF6, activating transcription factor 6; BiP, 
binding immunoglobulin protein; eIF2α, eukaryotic translation 
initiation factor 2α; ER, endoplasmic reticulum; ERS, ER stress; 
GADD34, growth arrest DNA-damage 34; IRE1, inositol-requiring 
protein 1α; P, phosphorylated; PERK, protein kinase RNA-like ER 
kinase; RIDD, regulated IRE1-dependent decay; S1P, serine protease 
site 1; S2P, metalloprotease site 2; TRAF2, tumor necrosis factor 
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receptor-associated factor 2; XBP1, homeostasis transcription factor 
X-box protein 1. 
 
3.1IRE 1 pathway  
IRE 1 constitutedbytwo isoforms-namely IRE1α as well asIRE 1β; IRE 
1β expression basically takes place in gastrointestinal Tract(GIT), 
along with respiratory tract, while IRE1α possesses broader 
expression[115]. The cytoplasmic tail IRE1α possesses twodomains,a 
serine /threonine kinase, structural domain in addition to 
aribonuclease(RNase) structural domain that function in 
togetherness[116]. Subsequent to binding to misfolded proteins 
activation ofkinase domain of IRE1α occurs, followed byits going 
through dimerization, coupling along with the 
transautophosphorylation, resulting inectopic activation of structural 
domain ofRNase[117]. With the catalysis of active RNaseexcision of 
intronwhich possesses26 nucleotides ( nt) frommessenger 
ribonucleic acid(mRNA) encoding homeostasis transcription factor X-
box binding protein 1 (XBP1), subsequently cleavage of two mRNA 
fragments occurs byRNA splicing ligase RNA 2’3’ cyclicphosphate as 
well as5’OH ligase resulting in formation of active transcription factor 
XBP1 (alias spliced form or XBP1s) [118]. XBP1sisimplicated in 
thegenes encoding ER membrane biogeneration, ER proteins folding, 
ER correlated breaking down, in addition toplethora of UPR [119]. 
C/EBP-homologous protein(CHOP) ,a controller of ERS stimulated 
apoptosis,getsactivated by activatingtranscription factor4(ATF4) via 
PERK- ATF4- CHOP pathway[120]. Additionally, IRE1α facilitates 
apoptosis by activating apoptosissignal regulated kinase 1(ASK)/ c-
Jun-N-terminal kinase(JNK) pathway by binding of tumor necrosis 
factor receptor associated factor(TRAF) [121]. Furthermore, 
regulated IRE1-dependent decay of mRNA (RIDD), represents an 
innovative UPR controlled pathway, which has been isolated in 
controlling cell fatein the impact of ERS . Activated RNase possessthe 
capability of targeting mRNAs along with the miRNAs by controlling 
such pathway[122]. 
Zundell etal. [123], illustrated that pharmacologicalhampering of 
IRE1α/XBP1 pathway, might work in the form of an innovative 
approach for AT-rich interactive domaincontaining protein(Arid1a) 
mutant cancers as well as XBP1geneKO led to improvementof 
cellsurvival in case of inactivated ovarian clear cell 
carcinomas[bearing Arid1a [123]. Song etal.[124], illustrated that 
regulating ERS or targeting the IRE1α- XBP1 signaling manipulated 
mitochondrial actions, in addition to therefore regulating T cells 
metabolic adapting along with tumorigenic capability in casesofOC 
[124]. The mitochondrial -correlated ER membrane further might 
work in the form ofa significant association among st mitochondria 
along with the ER[125]. The continuation of activation of IRE1α- XBP1 
pathway of dendriticcells in OC microenvironment was reported by 
Cubillos Ruiz etal.[126], in view of the sustenance of ERS that 
interfered with antigen presenting (AP) capability ofmetabolic 
homeostasis of the dendriticcells as well as reducedtheir protective 
working in embracingT cells against tumors, emphasizing 
adistinctimmunotherapeuticstrategyfor OCtherapy. OC cells use ERS 
for cellsurvival via the activation of IRE1α/XBP1 pathway, amongst 
rest of pathways as well as coactivator associated arginine 
methyltransferase 1 (CARM1)that is canonically upregulated in OC 
cells has been displayed in the controlling of XBP1s target genes in 
addition to possess selective sensitivity to the hampering of 
IRE1α/XBP1 pathway, mightbe utilized in the form of aplausible 
therapeutictarget approach for treatment of cells which 
expressCARM1[127].  
3.2 PERK pathway  
PERK represents a transmembrane which has a kinness to IRE 1, that 
possesses ER lumenal dimerization structural domain in addition to 
acytoplasmic kinase structural domain. The tubulin dimerization 
structural domain of PERK possesses lesser akinnessto structural 
domain of IRE 1. The cytoplasmic kinase structural domain of PERK 
furthergoes via trans autophosphorylation, in reaction to ERS, 
however it differs fromIRE 1 init further leads to 
phosphorylationoftranslationalinhibitor eukaryotic initiation factor2 
α(eIF-2α),at serine51 along with the phosphorylated eIF-2α 
hampersfull translation of proteins, as well asdecreases the quantities 
of proteins gaining entry into theER lumen[128]. Additionally,eIF-
2αphosphorylation, changes theeffectiveness of AUG start 
codon[129], that leads topropensity fortranslation of ATF4 
mRNA[128].  
 ATF4 represents a transcription factor whichactivates downstream 

UPR target genes, forinstance expression of growth arrest enhanced 
DNA damage inducible 34(GADD34), that stimulate the expression of 
CHOP [128,130]. CHOP facilitateDNA injury, hampers cellproliferation 
in addition to activates apoptosis by upregulatingproapoptotic B cell 
lymphoma-2(Bcl2) family members[131]. Thereby ATF4 works in the 
form of a significant factor in ER working gene expression, ERS 
modulated ROSformation , along with ERSmodulated apoptosis . ATF4 
further possesses the capability of controlling dephosphorylation 
ofeIF-2α via GADD45for generatinga feedback loop for reverting 
PERKmodulated translation decay[132]. Additionally, PERK 
phosphorylates nuclear factor erythroid-2-related factor-2(Nrf2), 
therefore upregulating antioxidants for facilitatingcellular 
antioxidation[133]. Collectively, these outcomes suggest that PERK- 
eIF-2α pathway modulates facilitation of cellsurvival at the time of 
ERS , however switches to the facilitation of apoptosis in case of 
continuation of ERS as well as aidsin sustenance of 
cellularhomeostatic equilibrium by activating ATF4 in addition 
toNRF2. Thereby PERK pathway represents afavourable therapeutic 
targetfor OC treatment.  
3.3 ATF6 pathway  
ATF6 represents a type IItransmembrane witha carboxy terminal- 
stresssensing lumenal structural domain as well as amino terminal b 
Zip transcription factor structural domain[134]. Transportation of 
ATF6 occurs to the golgi apparatus in case of situations of ERS,where 
its hydrolysis occurs in a sequential manner by the serineprotease 
site1(S1P)in addition to metalloprotease site2(S2P) proteins for the 
liberation ofamino terminal transcription factor structural domain 
which synergistically with XBP1 resulted in upregulation of genes 
implicated in proteins folding, along with the ER amplification in 
addition to genes implicated in ER correlated breakdown pathway 
constituents[135]. In case of OCtumor tissue it has been displayed that 
ATF6 expression of OC is greater in tumor tissue in contrast to normal 
ovarian tissue[136], as well as irreversible ERS,it resultin 
downregulation of quantities of antiapoptotic proteins [137]. 
Additionally, by controlling ATF6, sensitivity of OC cells to 
chemotherapeutic drugs mightbe changed[138]. Nevertheless,part 
ofATF6 in case of ER cell demise continues tobe uncharted in addition 
tocotargeting chemotherapeutic drugs for improvementof 
OCcellsurvival still is uncharted .  
4. Crosstalk of Ferroptosis along withERS in OC  
With thesluggish escalation ofattraction in ferroptosis along withERS, 
escalating quantities of studies have illustrated thatferroptosis along 
withERS possessa significant influence on OC, with intricate 
association amongst the two [22,139]. 
 Chen etal. [140], observed thatcontrolling ferroptosis in 
OCcellsenhanced the anti proliferative actions of cannabinoid 
derivative in vivo, as well asin vitro efficaciously hampering the 
generation of OC[141]. Organoids got utilized by Liu etal. [142], where 
they illustrated that hampering ofovariantumorigenesis occured 
subsequent toefficaciously targeting ferroptosis. Additionally, 

ferroptosis associated mechanistic modes hadthe capacity of 

reverting cisplatin resistance in OC[14], influencing chemotherapy 
resistance in OCalong with the prognosis of patients withOC[143]. Luo 
etal. [144], promoted the plausible clinical translation of targeting 

ferroptosis OC diagnosis in addition to synergistic therapy by 

combination offer roptosis mechanistic modes with the 
nanotechnology, magnetic resonance imaging (MRI) as well as 
cisplatin chemotherapeutic treatment [144]. 
ERS possessa significant the generation in addition toprognosis of 
patients withOC.As per studiesactivation of UPR sensorsas well as 
therefore ERS stimulated possesses the capability of stimulating 
apoptosis of OC cells [145], in addition to controlling of ERS 
correlated targetsimpacting resistance to chemotherapy regarding 
Octherapy [146], emphasizing the plausibility of innovative targets 
regarding OCtherapy. 
Zhang etal. [147], generated an attractive medical gadget for the 
prognostic evaluation of OC patients with epithelial OC by generatinga 
risk classification for the differentially expressed genes correlated 
with ERS.Ma etal. [148], made use of nanotechnology for precision 
along withlong lasting stimulating photodynamic reaction- therefore 
stimulating antitumor actions in case of a mouse model of OC . 
An escalating quantities of studies have illustrated the existence of 
association amongst ferroptosis along withERS, thatshare akin 
pathways [149], as well asROS,a side derivative of ERS, might 
aggravate ferroptosis, whereas ERS portrays acritical region at the 
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time of ferroptosis, further aggravate ferroptosis. Nevertheless, 
ferroptosis along withERS havenotbeen detailed in togetherness with 
regards to OC, as well as their crosstalk studies are not 
present.Figure3 illustrates observed mechanistic modes correlated 
with ferroptosis along withERS. 

 
Legend for Figure3 
Courtesy reference no-86Interactions between ferroptosis and ERS. 
ERS induces ferroptosis. ERS activates the IRE1α-XBP1s-Gα12, 
PERK-eIF2α-ATF4-CHOP, PERK-Nrf2-HO-1, PERK-P53-System 
Xc− and ATF6-PLA2G4A-AA-PGE2 pathways to induce ferroptosis. 
ERS inhibits ferroptosis. ERS inhibits ferroptosis by activating the 
PERK-eIF2α-ATF4-HSPA5 and PERK-eIF2α-ATF4-CHAC1 pathways. 
AA, arachidonic acid; ALOX12, arachidonate 12-lipoxygenase, 12S 
type; ATF4, activating transcription factor 4; ATF6, activating 
transcription factor 6; CHAC1, cation transport regulator homolog 1; 
CHOP, C/EBP homologous protein; eIF2α, eukaryotic translation 
initiation factor 2α; ERS, endoplasmic reticulum stress; Gα12, G 
protein subunit α 12; GSH, glutathione; HO-1, heme oxygenase-1; 
Hrd1, E3 ligase; HSPA5, heat shock 70 kDa protein 5; IRE1α, inositol-
requiring protein 1α; miR, microRNA; Nrf2, nuclear factor erythroid 
2-related factor 2; PERK, protein kinase RNA-like ER kinase; PGE2, 
prostaglandin E2; PLA2G4A, phospholipase A2 group IVA; XBP1, 
homeostasis transcription factor X-box protein 1. 
 
Zhong etal. [21],illustrated that ERS gets modulated by controlling of 

ferroptosis,they illustrated that ferroptosis as well asferroptosis 

modulated ERS resultin injury to prefrontal cortex neurons in 

addition to ferroptosis in prefrontal cortex neurons thatresultin 

activation of ERS correlated PERK- ATF4- CHOPpathway. The 

ferroptosis hampering agents of LOXs forinstance liproxstatin -

1alongwith the iron chelator desferoxamine (DFO), diminished the 

expression quantities of part restoration of ferroptosis correlated 

protein, upregulation of Nrf2 expression, downregulation of 

phosphorylated PERK, ATF4 as well asCHOP, in addition todiminished 

ERS by hampering ferroptosis. This led to mitigation of chronic 

intermittent hypoxia stimulated neuronal injury along with cognitive 

impairment , that yielded a therapeutic target with regards to 

treatment of neurocognitive impairment which occurred as aresult of 

chronic intermittent hypoxia[21]. ERS works in the form of a 

significant factor with regards to causative factor for the obesity 

correlated myocardial abnormalities with the upregulation of ERS 

markers which occur in case ofcontinued obesity. 

Tauroursodeoxycholic acid(TUDCA) possesses the capacity of 

ameliorating obesity correlated ERS stimulated myocardial 

impairment,whileferroptosis stimulates the depletion of 

advantageousactions yielded by TUDCA as well as escalates the 

actions of ERS[150]. Yang etal. [149], observed that activationof 

ferroptosis signaling in tumor cells facilitated the generation as well 

asliberation of exosomes which possesses the misfolded in addition to 

unfolded proteins, hampered ERS along with cellsurvival of the tumor 

cells[176]. Furthermore,ithas been demonstrated that the ERS- 

ferroptosis signaling - exosomes pathway stimulated ERS agents 

resistance ,emphasizing plausibly crucial intracellular mechanistic 

modes, which mightbe implicated in case of ERS signaling, ERS 

homeostasis as well as resistance to chemotherapeutic agents in 

cancer. Dihydroartemisinin(DHA) possesses the capability of 

stimulating ferroptosis of immunogenic cells in lung cancer, by 

accrual of LPO in addition to concomitantly stimulate cellular ERS. 

Greater evaluation illustrated that ferroptosis hampering agents 

resultedin depletion of DHA stimulated ERS, emphasizing a plausibly 

innovative therapeutic approach for the cancer therapy with theuse of 

canonical Chinese medicine in case of cancer immunotherapy[151].  

Akin tothat,the controlling of ERS further is capable of influencing 

ferroptosis. Han etal. [152], demonstrated that the polydatin mitigated 

early braininjury subsequent tosubarachnoid haemorrhage via 

upregulation of sirtuin (SIRT1) expression, along with therefore 

hampering ferroptosis in neuronal cells[152]. Wang etal. [153], 

displayed that ERS hampering agent 4phenylbutyric acid hampered 

ferroptosis inepithelial cells in theairway for the avoidance of acute 

lung injury, by ERS downregulation, reverting the 

lipopolysaccharide(LPS) stimulated reduction in GSH as well 

astherefore hampering the of ferroptosis proteins, ACSL4,COX2 in 

addition to ferritinheavy polypeptide(FTH1), therefore emphasizing 

plausible modalitiesfor the acute lung injury.Iin vitroworkon ovarian 

granulosa cells displayed escalated ROSformation, lipid peroxidation 

along with intracellular iron quantities in cells getting testosterone(T) 

therapy. Theexpression quantities of SLC7A11, a crucial protein of 

System Xc. – were further changed,leadingto diminished intracellular 

GSH generation as well as cystine insufficiency, which resultedin 

reduction of intracellular GPX4 quantities, the basic intracellular 

antioxidant, therefore stimulating ferroptosis in granulosa cells. 

Nevertheless, the T stimulated ferroptosis event gotdiminished by the 

ERS hampering agents [154]. Jiang etal. [155], observed that IRE1α, a 

controlling protein which works in the form of a significant factor with 

regards to UPR, estimate the proneness to ferroptosis by controlling 

the generation of GSH , pointing that hampering of IRE1αis an 

attractive approach for mitigating ferroptosis correlated pathological 

disease.Additionally,it wasillustrated that exogenous melatonin,the 

way elaborated by usearlier innon-alcoholic fatty liver disease 

(NAFLD) treatment[24], works by hampering ERS through the 

MT2/cAMP/PKA/IRE1 signaling pathway[156].The heavy metal 

cadmium works in the form of an escalated risk factor 

regardinghepatocyte ferroptosis as well as liver damage in addition to 

ferroptosis development is usually associated with activation of PERK- 

eIF-2α- ATF4- CHOP pathway,whose countering mightbe attained by 

hampering of the ERS fordiminishing ferroptosis-thus cadmium 

stimulated ferroptosis is basedon ERS[157]. Cadmium further 

controls ferroptosis along with stimulates nephrotoxicity in renal 

tubular epithelialcells via the above-mentioned mechanistic modes 

causing kidney injury [158]. Results obtained from Ulcerative colitis 

(UC) studypointed that ERS implicatedin the generation of ferroptosis. 

eIF-2α portrays a constituent of PERK branch of the ERS reactions, 

along with thephosphorylated nuclear factor κB(NFκB)p65 hampers 

ERS, therefore conferred protection to the intestinal epithelial cells in 

UC by directly crosstalking with eIF-2α[159]. 

Colorectal cancer (CRC)portrays a frequent malignancy of the 

digestive system, where primary surgery, along with chemotherapy 

had restricted efficaciousness[160].Tagitinin C, portrays a 

naturalproduct, stimulates ERS generation, resultingin nuclear 

translocation of Nrf2 in addition toupregulation of hemeoxygenase-

1(HO1). HO1 portrays a downstream effector of Nrf2, which resultsin 

escalatedpool of unstable iron, therefore facilitating lipid 
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peroxidation.A synergistic antitumor action of escalated pool of 

unstable iron with erastin resultedinstimulating ferroptosis in CRC 

cells . Therefore tagitinin C has been isolated in the form of an 

innovative stimulator of ferroptosis along with robust sensitizer[161]. 

Additionally, in case ofprostate cancer study, the modulation of 

arachidonic acid (AA ) liberation as well asbiogeneration of 

prostaglandins,ATF6 , PhospholipaseA2 GroupIVA was observed to 

confer protection to the prostate cancer cells from ferroptosis[162]. 

Upregulation of Gα12via IRE 1-XBP1 pathway subsequent toERS in 

hepatocytes , thus facilitatedthehepatic ferroptosis as well 

asaggravates acute liver injurythrough Rho associated coiledcoil 

containing protein 1 (ROCK), modulated 12lipooxygenase( ALOX12) 

in addition tomiR-15a [163]. Additionally, in case of a studycorrelated 

with diabetic nephropathy, ERS resultedin downregulation of 

SLC7A11 expression via the XBP1- E3 ubiquitinligase- Nrf2pathway, 

which diminishedGSH antioxidant quantities in addition to escalated 

cellular sensitivity to ferroptosis, therefore stimulating ferroptosis, 

which yielded understanding into the plausible mechanistic modes 

which postponed epithelial –mesenchymal transition (EMT) in renal 

tubular cells[22].  

 Additionally, variable studies have illustrated herbal constituents are 

capable of causingimprovementof ferroptosis by modulating ERS. 

Esculin,a substance which is an extract from cortex of willow bark, 

hampers the generation along with thepropagation ofcolon cancer, by 

activation of ERS -PERK signaling pathway as well asstimulating 

apoptosis in addition toferroptosis via the Nrf2/HO-1 along with the 

eIF2α/CHOPpathways[164]. Tanshinone IIA, the basic active 

constituent of the canonical Chinese medicine,Danshen, has been 

illustrated to execute antitumoractions basically in theER modulated 

ferroptosis signaling pathway, causing downregulationof ferroptosis 

in tumor cellsvia PERK - ATF4- heat shock 70kDaprotein5( HSPA5) 

pathway[165]. Escalated acetaminophen dosage, is the main 

etiological factor of drug stimulated acute liver injury .Salidroside 

hampers ERS modulated ferroptosisthrough the ATF4- cation 

regulator homolog-1axis by activatingthe 5’ AMP-activated protein 

kinase(AMPK) /SIRT1 signaling pathway as well as possessesa 

significant partin attenuating acetaminophen stimulated acute liver 

injury[166]. In case of astudy on glioma,DHA stimulated ERS 

resultedinupregulationof ATF4through PERK by escalatingthe 

expression in addition to actions of GPX4,thushampering DHA 

stimulated lipid peroxidation along with conferred protection to 

glioma cells throughuse of via PERK/ATF4/HSPA5 pathway , 

emphasizing an innovative mechanistic modes for glioma therapy 

[167].  

Additionally, ERS stimulates Ca2+ liberation as well as transportation 

of TF gets controlled by cytoplasmic Ca2+ quantities therefore 

influencing intracellular iron quantities as well as ferroptosis in colon 

cancer cells[168]. Ferroptosis treatment which concentrates on 

intracellular escalated ROS generation in addition to LPO accrual,has 

proven to be an innovative approach for lung cancer therapy 

.Administrationofaferroptosisnano-stimulator, constituted of DHA in 

addition to pH reactive calcium phosphateis doneto lungs using a 

nebulizer. The cyclic Ca2+-burst possesses the capability of modulating 

ERS , thereforefacilitating ROS accrual, resultinginaggravation of 

ferroptosis, yielding aninnovative research trajectoryfor lung cancer 

therapy[169]. 

It has been illustrated thatferroptosis along withERS, are further 

associated with tumor angiogenesis. In case of a study associated with 

glioma, escalatedATF4 expression, that represents adownstream 

transcription factor , activating downstream target genes of 

UPR,facilitated angiogenesis by promoting tumor shaping of the 

vascular structures in System Xc. – dependent fashion along with 

erastin-anacknowledgedstimulator of ferroptosis as well as RSL3(,a 

GPX4 hampering agent) hadthe capacity of diminishing ATF4 

stimulated angiogenesis[170]. 

 In reference to the generation of innovativeagents researchers on 

naturalsubstancesin addition to their derivatives, represents a 

favourable idea in generation of innovative treatments for cancer.The 

inimical sequelae have to be taken intoaccount as well as off-target 

effects which the capacity of negatively influencing quality of life 

(QOL) of patients. Agents that have escalated sensitivity as well as 

specificityare required to be formed guaranteeing least off-target 

effects in addition toplausibletoxicities[171]. Various studies have 

illustrated thatdiminishingoff-target effects possess the capacity of 

improvementof outcomes as well as prognosis forcases of OC& are 

robustlyassociated withferroptosis along withERS[172]. Dahlmanns 

etal. [173], observed that adjusting the mechanistic modes of 

ferroptosis caused improvementof tumor treatment[173], however 

disrupting ferroptosis induction resultedin forming off-target effects, 

therefore diminishing therapeutic effectiveness [173]. Akin to 

thatithas been illustrated that, ERS mightbe implicated in 

modulatingoff-target effects in case of glioblastomamultiformes[174]. 

ConsistentlyROS hampering agents, that are intricately associated 

with ferroptosis along withERS, possess certainmagnitude of 

impacting off-target effects[175]. Advancementsdone recentlyin 

conjugate drug deliverysystem[176],liposomal formulations[177], 

nanotechnology[178], combined with bioactive agents for the broader 

disease kinds for instance cancer might resultin improvementof 

effectiveness via localized administration along with exactitude 

delivery resultingin avoidance of off-target effects. Collectively, these 

suggest that ERS crosstalks with ferroptosis via, signaling pathway, 

controlling proteins, as well asassociated factors, emphasizing 

plausible target in addition tofor the avoidancealong with the 

treatment of disease .Nevertheless, exactitude mechanistic modes of 

howERS crosstalks with ferroptosis continue tobe uncharted for 

generating therapy the avoidancealong with the treatment of disease 

. 

 

5. Conclusions along with furtherDirections  

 

Ferroptosis along withERS, have gradually emerged in the form of 

favourable strategies for researchers, where studies have illustrated 

that ferroptosis along withERS, are associated with generation in 

addition toplausibilityof therapyof gynaecolgical 

malignancies[7,9,19,179]. OCthathas maximum mortality rates of 

gynaecolgical malignancieshas evoked considerable interest: 

Nevertheless, no germanework withregards to plausible mechanistic 

modes of crosstalkamongst ferroptosis along withERSexists.Here in 

thisreviewwe focus onpathogenesis of ERS as well as ferroptosis along 

with frequent signaling pathways in OC in addition to 

thecorrelatedpathways inlung, liver as well asCRCwith the objective 

of yielding innovative approaches forthe therapy for the 

avoidance,andprognostic asssessment along with OC treatment. 

 

Aplethora of studies[180-182], have illustrated that ERS as well as 

ferroptosis work in the form ofplausible therapeutictargets for the 

avoidancealong with the circumstances in addition to generation of 

OC, along with the prognostic asssessmentin case ofpatients with OC, 

whereas combination with other agents along withinnovative 

approaches further yieldedacquiring therapeutic actions, given 

innovative fields on OCresearch. Particularly, proliferation as well as 

the growth of OC cells controlling the ironquantities in OC cells, 

therefore ferroptosis in OC cells,mightbe stimulated inOC cells [89], 

which influences the circumstances in addition to generation of 

OC.Furthermore, ferroptosis induction plausibility mightbe attained 

in OC cells for the tackling of chemoresistance [183]. ERS possesses the 

capability of hampering cell proliferation in addition to generation of 

ferroptosis by controlling the germane pathway[184], capable 

oftargeting OC cancer cellswith chemoresistance ,in addition to ERS 

stimulated apoptosis has been displayed to resultin 

improvementofsensitivity of the cancer cells to paclitaxel, therefore 

prognostic improvement of OC patients[185].  
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 Furthermore, existence ofa correlation amongst the two,is there with 

ERS stimulating ferroptosis, resultingin Fe 2+ accrual along with lipid 

peroxidation via correlated pathways [168], as well as ERSwhich 

possesses greater than 50% of full lipid bilayers in case of a 

particularcell,that is thelipid source formost of cytosolic membranes, 

therefore are crucial for the startingof ferroptosis[186]. Ferroptosis 

possesses the capability of sustenance of ER homeostasis by signaling 

in addition tocontrolling the magnitude of ERS. Ferroptosis is capable 

of further gettingpositivelycontrolled bystimulating ERS via variable 

pathways .  

 

Nevertheless, ferroptosis as well as ERS possess variable complicated 

natureof mechanistic modes in addition toplethora of innovative 

mechanistic modes, signaling pathwaysalong with plausible 

therapeutictarget are getting unraveledcircumspectly, there is 

plausibility that numerousmore are awaitingto getunraveled. For 

instance theaforementioned fourmechanistic modes described, 

pathways correlated with lipid antioxidation in case of OC specifically 

GCH1- BH4- DHFR pathwayas well as DHODH- CoQ10H2 pathway still 

continue tobe uncharted. Mitochondrial OS isintricately correlated 

with associated events in ferroptosis as well as ERS in addition to 

insight withregards to mechanistic modesfor mitochondria are 

currently missing. Additionally, earlier initiating OC is pernicious in 

nature along with mechanistic modesregarding diagnostic 

preciseness, insufficiencyof work on iron quantities amongst OC 

tissues at the time ofvariable stagesofnormal ovarian tissues,however 

as per Basauli etal. [43],in case of HGSOC’S there is existence of 

diminished quantities of FPN(the iron exporter) whereas escalated 

quantities of TFN1(the iron importer) implicated in greater tumor 

iron quantities resultingin greater tumor proliferation as well as 

invasion and diminishing iron quantities reverts this tumor 

proliferation,called ironaddiction by them,however greater studies 

have to replicatethe same[43]. Disruption of iron metabolism at the 

time of OC might further hamper further propagation of OC[89]. 

Circumstances, propagation along with treatment of OC represents a 

complicated event, as well as a complicated association is existentwith 

ERS in addition toferroptosis.If there is existence of the germane 

pathways asin other diseases possess commensurate part inOC, along 

with if clearcut variations in part in variable cells at variable stages of 

OC as well as if they possess proportional controlling part in 

circumstances, development along with recurrence has to be 

estimated. Moreover , prognostic anticipation of OC has too many 

inadequacies without clinical endorsement. Despite, present studies 

withregards to variablediseases have illustrated interactions amongst 

ferroptosis as well as ERS possess a germane improvement actions on 

the diseases [21,187-189], even now there is absence of 

germaneresearch in the context of mechanistic modes on the manner 

interactions amongst ferroptosis as well as ERS occur in OC. 

Dependent on the acquisition of greater insight withregards to 

plausible therapeutic targets of ERS as well as ferroptosis, the part of 

mechanistic pathways in the events of OC, the influence of interactions 

amongst the two, the mannertranslation of the outcomesobtained 

from workdone, with existence of plenty of botherationsin 

translatingclinicalexperimentaloutcomes in clinical scenario. In 

reference to clinicalindex determination theuseof above-mentioned 

mechanistic modes in addition torecent advancements in scientific 

technology, for instancenanomaterials ,MRI,XRays might in 

combination aid in early pick up ofpathological factorseven prior to 

initiation of OC along with evaluationof the effectiveness of or 

prognostic asssessment at the time of treatment initiation or 

subsequent to disease therapy . Evaluationof quantities of iron 

metabolismat the time ofgermane investigations, might aid in early 

pick of OC , with plausibility of causing improvementof treatment 

choicesin addition toresultsfor the patients with OC 

.Thetrajectoriessuch studies takeare awaitingclinicaltranslation. 

Therefore,extra screening of frequently utilized chemotherapy 

regimensIn reference to developmentof innovative agents have 

clearcut safety as well as tolerability botherations apart from 

generation of chemotherapy resistance. Therefore screening of 

innovative agents that are safe andtolerable is theneed of hour.If ERS 

hampering gets utilized clinically is awaited. Additionally, different 

studies have observed that canonical Chinese medicine[65,165-,190], 

have efficaciousness in the controlling of interactions amongst 

ferroptosis as well as ERS in OC, therefore, clinical safety assessment 

is mandatory. Thereby, an exhaustive explorationof these is required 

to see if combo would be synergistic along with hamper resistance 

development needs to be seen. 
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